You’re likely to get the Coronavirus

-James Hamblin
Contd from previous issue
New models have sprung up in recent years, too, that promise to speed up vaccine development. One is the Coalition for Epidemic Preparedness (CEPI), which was launched in Norway in 2017 to finance and coordinate the development of new vaccines. Its founders include the governments of Norway and India, the Wellcome Trust, and the Bill & Melinda Gates Foundation. The group’s money is now flowing to Inovio and other small biotech start-ups, encouraging them to get into the risky business of vaccine development. The group’s CEO, Richard Hatchett, shares Fauci’s basic timeline vision—a COVID-19 vaccine ready for early phases of safety testing in April. If all goes well, by late summer testing could begin to see if the vaccine actually prevents disease.
Overall, if all pieces fell into place, Hatchett guesses it would be 12 to 18 months before an initial product could be deemed safe and effective. That timeline represents “a vast acceleration compared with the history of vaccine development,” he told me. But it’s also unprecedentedly ambitious. “Even to propose such a timeline at this point must be regarded as hugely aspirational,” he added.
Even if that idyllic year-long projection were realized, the novel product would still require manufacturing and distribution. “An important consideration is whether the underlying approach can then be scaled to produce millions or even billions of doses in coming years,” Hatchett said. Especially in an ongoing emergency, if borders closed and supply chains broke, distribution and production could prove difficult purely as a matter of logistics.
Fauci’s initial optimism seemed to wane, too. Last week he said that the process of vaccine development was proving “very difficult and very frustrating.” For all the advances in basic science, the process cannot proceed to an actual vaccine without extensive clinical testing, which requires manufacturing many vaccines and meticulously monitoring outcomes in people. The process could ultimately cost hundreds of millions of dollars—money that the NIH, start-ups, and universities don’t have. Nor do they have the production facilities and technology to mass-manufacture and distribute a vaccine.
Production of vaccines has long been contingent on investment from one of the handful of giant global pharmaceutical companies. At the Aspen Institute last week, Fauci lamented that none had yet to “step up” and commit to making the vaccine. “Companies that have the skill to be able to do it are not going to just sit around and have a warm facility, ready to go for when you need it,” he said. Even if they did, taking on a new product like this could mean massive losses, especially if the demand faded or if people, for complex reasons, chose not to use the product.
Making vaccines is so difficult, cost intensive, and high risk that in the 1980s, when drug companies began to incur legal costs over alleged harms caused by vaccines, many opted to simply quit making them. To incentivize the pharmaceutical industry to keep producing these vital products, the U.S. government offered to indemnify anyone claiming to have been harmed by a vaccine. The arrangement continues to this day. Even still, drug companies have generally found it more profitable to invest in the daily-use drugs for chronic conditions. And coronaviruses could present a particular challenge in that at their core they, like influenza viruses, contain single strands of RNA. This viral class is likely to mutate, and vaccines may need to be in constant development, as with the flu.
“If we’re putting all our hopes in a vaccine as being the answer, we’re in trouble,” Jason Schwartz, an assistant professor at Yale School of Public Health who studies vaccine policy, told me. The best-case scenario, as Schwartz sees it, is the one in which this vaccine development happens far too late to make a difference for the current outbreak. The real problem is that preparedness for this outbreak should have been happening for the past decade, ever since SARS. “Had we not set the SARS-vaccine-research program aside, we would have had a lot more of this foundational work that we could apply to this new, closely related virus, ” he said. But, as with Ebola, government funding and pharmaceutical-industry development evaporated once the sense of emergency lifted. “Some very early research ended up sitting on a shelf because that outbreak ended before a vaccine needed to be aggressively developed.”
On Saturday, Politico reported that the White House is preparing to ask Congress for $1 billion in emergency funding for a coronavirus response. This request, if it materialized, would come in the same month in which President Donald Trump released a new budget proposal that would cut key elements of pandemic preparedness—funding for the CDC, the NIH, and foreign aid. 
These long-term government investments matter because creating vaccines, antiviral medications, and other vital tools requires decades of serious investment, even when demand is low. Market-based economies often struggle to develop a product for which there is no immediate demand and to distribute products to the places they’re needed. CEPI has been touted as a promising model to incentivize vaccine development before an emergency begins, but the group also has skeptics. Last year, Doctors Without Borders wrote a scathing open letter, saying the model didn’t ensure equitable distribution or affordability. CEPI subsequently updated its policies to forefront equitable access, and Manuel Martin, a medical innovation and access adviser with Doctors Without Borders, told me last week that he’s now cautiously optimistic. “CEPI is absolutely promising, and we really hope that it will be successful in producing a novel vaccine,” he said. But he and his colleagues are “waiting to see how CEPI’s commitments play out in practice.”
These considerations matter not simply as humanitarian benevolence, but also as effective policy. Getting vaccines and other resources to the places where they will be most helpful is essential to stop disease from spreading widely. During the 2009 H1N1 flu outbreak, for example, Mexico was hit hard. In Australia, which was not, the government prevented exports by its pharmaceutical industry until it filled the Australian government’s order for vaccines.
The more the world enters lockdown and self-preservation mode, the more difficult it could be to soberly assess risk and effectively distribute tools, from vaccines and respirator masks to food and hand soap.
Italy, Iran, and South Korea are now among the countries reporting quickly growing numbers of detected COVID-19 infections. Many countries have responded with containment attempts, despite the dubious efficacy and inherent harms of China’s historically unprecedented crackdown. Certain containment measures will be appropriate, but widely banning travel, closing down cities, and hoarding resources are not realistic solutions for an outbreak that lasts years. All of these measures come with risks of their own. Ultimately some pandemic responses will require opening borders, not closing them. At some point the expectation that any area will escape effects of COVID-19 must be abandoned: The disease must be seen as everyone’s problem. 
JAMES HAMBLIN, MD, is a staff writer at The Atlantic. He is also a lecturer at Yale School of Public Health and author of the forthcoming book Clean.